A double inequality for bounding Toader mean by the centroidal mean

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean

The authors find the greatest value λ and the least value μ, such that the double inequality C(λa + (1-λb), λb+(1-λ)a) < αA(a, b) + (1-α)T(a,b) < C(μa + (1 - μ)b, μb + (1 - μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a ≠ b, where C(a, b) = 2(a² + ab + b²)/3(a + b), A(a, b) = (a + b)/2, and T(a, b) = (a + b)/2, and T(a, b) = (2/π) ∫₀(π/2) √a²cos²θ + b²sin²θdθ denote, respectively, the centro...

متن کامل

A Double Inequality for the Combination of Toader Mean and the Arithmetic Mean in Terms of the Contraharmonic Mean

We find the greatest value λ and the least value μ such that the double inequality C(λa + (1 − λ)b, λb+ (1 − λ)a) < αA(a, b) + (1 − α)T (a, b) < C(μa + (1 − μ)b, μb+ (1− μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a 6= b, where C(a, b), A(a, b), and T (a, b) denote respectively the contraharmonic, arithmetic, and Toader means of two positive numbers a and b.

متن کامل

Optimal inequalities for bounding Toader mean by arithmetic and quadratic means

In this paper, we present the best possible parameters [Formula: see text] and [Formula: see text] such that the double inequality [Formula: see text] holds for all [Formula: see text] and [Formula: see text] with [Formula: see text], and we provide new bounds for the complete elliptic integral [Formula: see text] [Formula: see text] of the second kind, where [Formula: see text], [Formula: see ...

متن کامل

Sharp Generalized Seiffert Mean Bounds for Toader Mean

and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then

متن کامل

Two Sharp Inequalities for Bounding the Seiffert Mean by the Arithmetic, Centroidal, and Contra-harmonic Means

In the paper, the authors find the best possible constants appeared in two inequalities for bounding the Seiffert mean by the linear combinations of the arithmetic, centroidal, and contra-harmonic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings - Mathematical Sciences

سال: 2014

ISSN: 0253-4142,0973-7685

DOI: 10.1007/s12044-014-0183-6